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Preface 

Electric machines and transformers are found in many different 
devices used in industry and household appliances. Their users often wish to 
know what will happen if the working conditions differ from the ratings of 
the device given by the manufacturer and also how to explain the resulting 
effects. The fundamentals of applied physics in the domain of electric 
engineering are usually given in high school. However, the explanations 
there concern oversimplified structures of certain machinery and apply basic 
mathematical relationships only.  

This book is addressed to students (current and former) of Electrical 
Engineering and other, similar types of study, who are interested in a deeper 
insight into a fascinating domain of electromechanical energy conversion. It 
is assumed that the reader has a basic knowledge of electric circuits together 
with associated laws governing their behaviour. Two fundamental abstract 
concepts are extensively used throughout the text – the equivalent circuit of 
the device and the electromagnetic field inside it. Both of them are able to 
answer most questions of the type “What if?” related to exploitation 
conditions, but their properties are rather opposed. The equivalent circuit 
enables almost immediate results, although with only moderate accuracy. 
Field analysis allows us to get much more exact information about the details 
of required parameters of a given device, but may simultaneously be 
extremely time-consuming. The compromise chosen here is to mostly use 
the analytical expressions leading to an equivalent circuit; nevertheless, the 
integral identities necessary for post-processing of numerical results are also 
given and almost all the illustrations come from field-based solutions.  

Such an approach realizes, in the author’s opinion, the easiest way to 
acquire fundamental knowledge about the principle of operation for those 
for whom this book will be the first and probably the last contact with the 
theory of electric machinery. Those readers who desire to expand their 
expertise in the area of energy conversion will also find explanations of the 
main concepts used in field treatment and will be familiar with the geometry 
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and material structure of the basic types of electric machines and 
transformers. Besides, they should be ready to start studying the next, more 
advanced level of theoretical prediction of the performance of electrical 
devices.  

The exemplary results of calculations presented below were obtained 
within the Infolytica environment (Magnet and MotorSolve software) and they 
mostly concern machines of moderate power. This helps to avoid the 
explanation of a lot of details connected with high voltage, thermal or 
mechanical strength questions, which must appear when large units are 
considered. Some of the graphics presenting details of electric machines 
come from the work of my students, and special thanks are due to 
Ewa Kubiak, Lukasz Wisniewski and Bartlomiej Krzywiec. 

This book covers the scope of the course entitled Electric Machines 
presented at the Faculty of Electrical, Electronic, Computer Science and 
Control Engineering, The Lodz University of Technology. 

Paweł Witczak, Łódź, January, 2015 
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Notation System 

 
Some general rules were adopted for symbols used within this book. Thus, 
a script letter, say u, denotes the instantaneous value of a scalar, time-
varying quantity – voltage in this case. The same letter but capitalized is its 
RMS value and with subscript m represents the magnitude. We may write 

𝑢𝑢 = 𝑈𝑈𝑚𝑚 sin(𝜔𝜔𝜔𝜔) = √2𝑈𝑈 sin(𝜔𝜔𝜔𝜔) 
Letters in bold are reserved for vectors, e.g. the velocity v given in 2D coordinate 
system 0n1n2 is equal to 

𝐯𝐯 = (𝐧𝐧𝟏𝟏𝑉𝑉1𝑚𝑚 + 𝐧𝐧𝟐𝟐𝑉𝑉2𝑚𝑚) sin(𝜔𝜔𝜔𝜔) 
There are a few exceptions to the above, because of the commonly used 
notation in literature. For example, the flux density vector B alternating in 
time will be  

𝐁𝐁(t) = (𝐧𝐧𝟏𝟏𝐵𝐵1𝑚𝑚 + 𝐧𝐧𝟐𝟐𝐵𝐵2𝑚𝑚) sin(𝜔𝜔𝜔𝜔) 
Capital letters underlined mean phasors (complex numbers), having sinusoidal 
variation in time 

𝑈𝑈 = √2𝑈𝑈[𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔) + 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗(𝜔𝜔𝜔𝜔)] 
 
Abbreviations frequently used are as follows: 

AC - alternating current 

DC - direct current 

EMF - electromotive force 

Im - imaginary part of complex number 

MMF - magnetomotive force (ampere-turns) 

Re - real part of complex number 

RMS - root mean squared 

rps - revolutions per second 

rpm - revolutions per minute 
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The main symbols used in the book are: 

B - magnetic flux density vector, [ T ] 

Bδ - radial component of magnetic flux density in air gap, [ T ] 

Bre - magnetic remanence, [ T ] 

D - electric flux density (electric displacement) vector, [ C/m2 ] 

E - electric field vector, [ V/m ] 

e, E - electromotive force, [ V ] 

f, F - force vector, [ N ] 

fS - surface force density, [ N/m2 ] 

fV - volumetric force density, [ N/m3 ] 

FR - rotor magnetomotive force, [ A ] 

FS - stator magnetomotive force, [ A ] 

f1 - network frequency, [ Hz ] 

fR - rotor frequency, [ Hz ]  

fS - stator frequency, [ Hz ] 

H - magnetic field vector, [ A/m ] 

Hc - coercivity, [ A/m ] 

i, I - electric current, [ A ] 

j - sign of imaginary part of complex number, j2 = -1 

J - conducting electric current density vector, [ A/m2 ] 

L - inductance, [ H ] 

LC - length of core (usually out of drawing plane), [ m ] 

M - moment of force, torque, [ Nm ] 

Mint - internal torque, [ Nm ] 

Mem - electromagnetic torque, [ Nm ] 

Mme - mechanical torque, [ Nm ] 

n1 - rotating field speed, [ rps ] 

N - number of turns 

NS - stator number of turns 

NR - rotor number of turns 



 ix 
 

Neff - effective number of turns 

p(t), P - instantaneous, mean active power, [ W ] 

p - pole pair number 

q - number of slots per pole and phase 

Q - mean reactive power, [ VAr ] 

R - resistance, [ Ω ] 

s - slip 

S - mean apparent power, [ VA ] 

t - time, [ s ] 

u, U - voltage, [ V ] 

v - velocity (speed), [ m/s ] 

vem, Vem - velocity (speed) of electromagnetic field, [ m/s ] 

vme, Vme - mechanical velocity (speed), [ m/s ] 

wem - magnetic energy density, [ J/m3 ] 

Wem - magnetic energy, [ J ] 

X - reactance [ Ω ] 

αgeo - geometric angle, [ rad ] 

αel - electric (phase) angle, [ rad ] 

δ - air gap, [ m ] 

γ - conductivity, [ S/m ] 

ε0 - permittivity of vacuum, 8.85 10-12 [ F/m ] 

εr - relative permittivity of material, [ - ] 

µ0 - permeability of vacuum, 4π 10-7 [ H/m ] 

µr - relative permeability of material 

τp - pole pitch, [ m ] 

Φm - magnetic flux magnitude, [ Tm2 ] 

Ψm - magnetic flux linkage magnitude, [ Tm2 ] 

ω - angular frequency, [ rad/s ] 

Ω - angular speed, [ rad/s ] 
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Chapter 1 
Fundamentals of Energy Conversion 

 
1.1. Power and Energy Flow 
 Any device serving as an energy converter has specific “terminals” 
creating the input and output ports, where the energy flows, usually on the 
outer surface of the given device. In the case of electric energy, such a port is 
formed by electric wires connecting the device with the network, mechanical 
energy is transmitted by the shaft, thermal and acoustic energy by the outer 
surface and so on. An exemplary illustration is presented in Fig. 1.1 using the 
thermovision photo of an electric motor which shows the temperature 
distribution on the surface of the motor – the violet colour represents here 
the ambient temperature.  

 
Fig. 1.1. Illustration of “ports” for different kinds of energy present in electric 

machine using thermovision photography 
 
 The general equation representing the theorem of the energy 
conservation is 

𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 + 𝛿𝛿𝛿𝛿𝑎𝑎𝑎𝑎𝑎𝑎 (1.1) 

mechanical  
terminal 

electric 
terminals 
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where δWin, δWout and δWacc are portions of input, output and accumulated 
energies flowing to and from the analyzed device within time δt. The input 
and output quantities depend on the type of energy conversion – for electric 
machines it may be the motor, generator or brake regime. The accumulated 
energy is the sum of the electromagnetic energy and heat stored (both are 
able to do the work) inside the machine. When the amount of accumulated 
energy does not change (δWacc = 0), we say the machine is “at steady 
conditions”. The present lecture will deal only with that kind of exploitation 
condition, which is in fact the easiest one to explain. Nevertheless, it covers 
the majority of possible cases in practice. 
 The intensity of the energy conversion is characterized by the mean 
power P, also known as active power: 

𝛿𝛿𝛿𝛿 = 𝑃𝑃𝑃𝑃𝑃𝑃 (1.2) 
which at steady conditions is kept constant. When the time period δt tends 
to zero, we obtain the instantaneous power p(t): 

𝑝𝑝(𝑡𝑡) =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (1.3) 

The equation connecting these concepts is 

𝑃𝑃 =
1
𝛿𝛿𝛿𝛿
� 𝑝𝑝(𝑡𝑡)𝑑𝑑𝑑𝑑
𝛿𝛿𝛿𝛿

0

 (1.4) 

 The power in electromechanical energy converters may be in the form 
of electromagnetic Pem, mechanical Pme or thermal power Pth. The last one 
usually appears as the necessary effect of realistic energy exchange and it is 
called power losses, customarily designated as ∆P. Power losses are 
generated in particular volumes of the machine (windings, core, bearings 
etc.) in various ways, but all of them finally leave the outer surface in the 
form of heat flux, which is proportional to the resultant mean temperature 
of the device. The general diagram of the power flow is shown in Fig. 1.2. The 
power losses on the input ∆Pin and output ∆Pout sides – sometimes called 
the primary and secondary side – have the same character as the input and 
output power. The component termed internal power Pint represents the 
amount of power “converted” from one kind of power into another. 
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Fig. 1.2. Sankey’s diagram of power flow 
 
It must fulfil the equation 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑖𝑖𝑖𝑖 − ∆𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 + ∆𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 (1.5) 
Depending on the type of device, the nature of the input and output may be 
electrical or mechanical, as presented in the table below. 

Table 1.1. Types of electromechanical converter 

Type of Device Input Power Output Power 

Transformer electrical electrical 

Motor electrical mechanical 

Generator mechanical electrical 

Gear mechanical mechanical 
 
The efficiency η is defined as the ratio 

𝜂𝜂 =
𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜
𝑃𝑃𝑖𝑖𝑖𝑖

= 1 −
Δ𝑃𝑃𝑖𝑖𝑖𝑖 + Δ𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜

𝑃𝑃𝑖𝑖𝑖𝑖
 (1.6) 

It does not concern the transformer, where the power flow is defined in 
another way, as will be explained later on. 
 Each type of power is defined as the product – algebraic or scalar – of two 
quantities called the state variables. We have in the electromagnetic domain 
a simple multiplication: 

Pin 
Pout 

∆Pin ∆Pout

Pint 
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𝑝𝑝𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝑢𝑢(𝑡𝑡)𝑖𝑖(𝑡𝑡) (1.7) 
where u(t) and i(t) are instantaneous values of voltage and current, 
respectively. In mechanical analysis we must remember that there are two 
kinds of motion:  

- linear, when  

𝑝𝑝𝑚𝑚𝑚𝑚(𝑡𝑡) = 𝒇𝒇𝑚𝑚𝑚𝑚(𝑡𝑡) ∙ 𝒗𝒗𝑚𝑚𝑚𝑚(𝑡𝑡) (1.8) 
where fme(t) and vme(t) are instantaneous values of mechanical force and 
speed vectors, and 

- rotary, when  

𝑝𝑝𝑚𝑚𝑚𝑚(𝑡𝑡) = 𝒎𝒎𝑚𝑚𝑚𝑚(𝑡𝑡) ∙ 𝝎𝝎𝑚𝑚𝑚𝑚(𝑡𝑡) (1.9) 
where mme(t) and ωme(t) are instantaneous values of torque (moment of 
force) and angular speed vectors, respectively. In further analysis we will 
consider the steady states of rotating electric machines only, when the 
angular velocity remains constant, even if the torque has a component 
pulsating in time. This means in practice that the rotor inertia is big enough 
to keep the velocity pulsations at a negligible level. Therefore, the mean 
value of torque may also be used. Besides, the rotating machines have one 
degree of freedom, so the vector discriminants in (1.9) can be dropped, 
resulting in 

𝑝𝑝𝑚𝑚𝑚𝑚(𝑡𝑡) ≅ 𝑃𝑃𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑚𝑚𝑚𝑚Ω𝑚𝑚𝑚𝑚 (1.10) 
Following these assumptions, electrical power definitions may also be 
reduced to mean data. The internal power (often called electromagnetic) can 
be defined in two ways using electric or mechanical quantities: 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑒𝑒𝑒𝑒Ω𝑒𝑒𝑒𝑒 = 𝐸𝐸𝐸𝐸 (1.11) 
where E and I are RMS (root mean squared) values of electromotive force 
(EMF) and electric current in the armature winding, Mem is the mean value of 
torque, and Ωem is the angular velocity of the armature against the magnetic 
field. The instantaneous EMF e(t) differs from the voltage u(t) measured on 
terminals by the voltage drop on the resistance R of the armature winding: 

𝑒𝑒(𝑡𝑡) = 𝑢𝑢(𝑡𝑡) − 𝑖𝑖(𝑡𝑡)𝑅𝑅 (1.12) 
The above equation has been written under the so-called receiver 
convention, where the electric current flows against EMF. We can 
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understand the electromotive force as the voltage measured on terminals 
of the given circuit when the electric current value is close to zero.  

 
Fig. 1.3. Scheme of elementary circuit 
 
The RMS value, e.g. of electric current, is defined as 

𝐼𝐼 = �
1
𝑇𝑇
� 𝑖𝑖2(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑇𝑇

0

 (1.13) 

It is clear that the RMS value of a constant in time quantity amounts to that 
constant value. 
 
1.2. Representation of Sinusoidal Signals by Means of Complex 

Numbers 
 The complex number z means the following expression: 

𝑧𝑧 = 𝑎𝑎 + 𝑗𝑗𝑗𝑗 (1.14) 
where a and b are real numbers and j2= - 1. The above relation may be 
presented in trigonometric form: 

𝑧𝑧 = �𝑎𝑎2 + 𝑏𝑏2(cos𝜑𝜑 + 𝑗𝑗 sin𝜑𝜑) = �𝑎𝑎2 + 𝑏𝑏2 𝑒𝑒𝑗𝑗𝑗𝑗 (1.15) 
where the angle (phase) ϕ is equal to  

𝜑𝜑 = atan 𝑏𝑏
𝑎𝑎

            for a > 0 

𝜑𝜑 = 𝜋𝜋 + atan 𝑏𝑏
𝑎𝑎

     for a < 0 
(1.16) 

The numbers a and b are named: 
- real part of z     Re(z) = a, 
- imaginary part of z Im(z) = b. 

R 
e(t) 

u(t) 
i(t) 

winding 
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The complex numbers are presented on a 2D plane created by axis Re and 
Im, where the angle ϕ is measured starting from axis Re towards Im, as 
displayed in Fig. 1.4. 

 
Fig. 1.4. Complex numbers plane 
 
The complex conjugate z* has the phase of the opposite sign to z: 

𝑧𝑧∗ = 𝑎𝑎 − 𝑗𝑗𝑗𝑗 (1.17) 
Therefore, the magnitude squared of z is given by 

𝑧𝑧∗𝑧𝑧 = (𝑎𝑎 − 𝑗𝑗𝑗𝑗)(𝑎𝑎 + 𝑗𝑗𝑗𝑗) = 𝑎𝑎2 + 𝑏𝑏2 = �𝑧𝑧�2 (1.18) 

Equation (1.15) helps also to express the trigonometric functions in terms of 
exponential ones. By adding z and z*, one obtains 

𝑧𝑧 + 𝑧𝑧∗ = 2�𝑧𝑧� cos𝜑𝜑 = �𝑧𝑧��𝑒𝑒+𝑗𝑗𝑗𝑗 + 𝑒𝑒−𝑗𝑗𝑗𝑗� (1.19) 
which immediately gives 

cos𝜑𝜑 =
𝑒𝑒+𝑗𝑗𝑗𝑗 + 𝑒𝑒−𝑗𝑗𝑗𝑗

2
 (1.20) 

Similarly, when subtracting z* from z, we have 

sin𝜑𝜑 =
𝑒𝑒+𝑗𝑗𝑗𝑗 − 𝑒𝑒−𝑗𝑗𝑗𝑗

2𝑗𝑗
 (1.21) 

It is obvious that complex numbers have the periodicity property: 

𝑧𝑧(𝜑𝜑 ± 𝑘𝑘 2𝜋𝜋) = 𝑧𝑧(𝜑𝜑)         𝑘𝑘 = 1,2, … (1.22) 

Re 

Im +jb 

a 

b 

-jb 0 

z=a+jb 
ϕ 
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Therefore, they are commonly used during the analysis of sinusoidal signals. 
Replacing ϕ in (1.20) by ωt, where t is time, ω = 2πf is termed as angular 
frequency and f is frequency, we may represent the cosine in the time 
quantity e.g. voltage u(t) as the sum of two so-called phasors rotating on 
a complex plane in opposite directions: 

𝑢𝑢(𝑡𝑡) = 𝑈𝑈𝑚𝑚cos𝜔𝜔𝜔𝜔 =
𝑈𝑈𝑚𝑚
2
𝑒𝑒+𝑗𝑗𝑗𝑗𝑗𝑗 +

𝑈𝑈𝑚𝑚
2
𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑅𝑅𝑅𝑅�𝑈𝑈𝑚𝑚𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗� (1.23) 

These relationships are illustrated in Fig. 1.5 for ωt=ϕ.  
 

 
Fig. 1.5. Time signal and its phasor equivalent 
 
Equation (1.23) is also the basis of the spectral analysis (the representation 
of a non-sinusoidal signal by means of the sum of sinusoidal ones); however, 
it is outside the scope of this course. 
 Two signals a(t) and b(t) of the same frequency measured 
simultaneously may be shifted in phase by an angle, say ∆ϕ. Mathematically, 
this is obtained by multiplying by exp(j∆ϕ): 

𝑎𝑎(𝑡𝑡) = 𝐴𝐴𝑚𝑚𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗

𝑏𝑏(𝑡𝑡) = 𝐵𝐵𝑚𝑚𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝑒𝑒𝑗𝑗∆𝜑𝜑 = 𝐵𝐵𝑚𝑚𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔+∆𝜑𝜑) (1.24) 

We say that b(t) is leading a(t) – the maximum of b(t) appears earlier than 
that of a(t), or a(t) is lagging b(t) by angle ∆ϕ. A graphical illustration is 
displayed in Fig. 1.6. 

voltage 

- Um    

0 

    ωt 
2π 

Re(Umejϕ)  

 

Re 

Im 

0.5Umejϕ 0.5Ume-jϕ 
−ϕ +ϕ 

+ϕ 

+Um    
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Fig. 1.6. Phase shift between two signals in time and in complex plane 
 
1.3. Apparent, Active and Reactive Power 
 Let’s analyze the simple circuit shown in Fig. 1.7 consisting of two 
parallel branches supplied from a sinusoidal network having the RMS voltage 
U. The first branch has resistance R and inductance L connected in series; as  
will be shown later, this may represent e.g. an induction motor. The second 
branch contains the capacitor C only. The reactances are: XL = ωL and  
XC = 1/ωC, respectively. In order to simplify the notation we may set the 
voltage as a real number – its phasor coincides with the Re axis. 

 
Fig. 1.7. Elementary circuit and its phasor diagram when the switch is on  

(RMS quantities) 

 

  

Re 

Im 

b(t) 

a(t) 
a 

b 

∆ϕ 

    ωt 
2π 

0 
ωt0 

IL IC 

C 

L 

R 

I 

U 
ϕL 

Re(IL) 

U 

IL 

IC 

Re 

Im 

ϕC 
Im(IL) 
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 In the first instance we will consider the case when the switch is off – 
the load current I is equal to IL. 

𝐼𝐼 𝐿𝐿 =
𝑈𝑈

𝑅𝑅 + 𝑗𝑗𝑋𝑋𝐿𝐿
=

𝑈𝑈
𝑅𝑅2 + 𝑋𝑋𝐿𝐿2

(𝑅𝑅 − 𝑗𝑗𝑋𝑋𝐿𝐿) (1.25) 

As expected, the current IL is lagging the voltage – the phase angle ϕL is 
negative: 

𝜑𝜑𝐿𝐿 = atan
𝐼𝐼𝐼𝐼(𝐼𝐼𝐿𝐿)
𝑅𝑅𝑅𝑅(𝐼𝐼𝐿𝐿)

= atan
−𝑋𝑋𝐿𝐿
𝑅𝑅

 (1.26) 

Converting the IL current into exponential form, we have 

𝐼𝐼 𝐿𝐿 =
𝑈𝑈

�𝑅𝑅2 + 𝑋𝑋𝐿𝐿2
𝑒𝑒𝑗𝑗𝜑𝜑𝐿𝐿 = 𝐼𝐼𝑒𝑒𝑗𝑗𝜑𝜑𝐿𝐿  (1.27) 

Now we may define the complex or apparent power S (against voltage) –  
see (1.18): 

𝑆𝑆 = 𝑈𝑈𝐼𝐼 𝐿𝐿∗ = 𝑈𝑈𝑈𝑈𝑒𝑒−𝑗𝑗𝜑𝜑𝐿𝐿 = 𝑃𝑃 + 𝑗𝑗𝑗𝑗 = 𝑈𝑈𝑈𝑈[cos(−𝜑𝜑𝐿𝐿) + 𝑗𝑗 sin(−𝜑𝜑𝐿𝐿)] (1.28) 
The real part P is named active power, while the imaginary Q is called 
reactive power. Note that for RL load Q is positive because ϕL < 0. The units 
of all these types of power are different: [S] = VA, [P] = W and [Q] = VAr. 
The ratio P/S is called the power factor, commonly abbreviated as pf. When 
the voltage and current are sinusoidal, the power factor is equal to cos ϕL. 
 A better understanding of the physical meaning of power components 
can be obtained by analyzing the instantaneous power p(t). Having at input 
u(t) = Umcos(ωt) and i(t) = Imcos(ωt + ϕL), we obtain 

𝑝𝑝(𝑡𝑡) = 𝑢𝑢(𝑡𝑡)𝑖𝑖(𝑡𝑡) = 𝑈𝑈𝑚𝑚𝐼𝐼𝑚𝑚 cos(𝜔𝜔𝜔𝜔) cos(𝜔𝜔𝜔𝜔 + 𝜑𝜑𝐿𝐿) (1.29) 

The results are displayed in Fig. 1.8. We see that the instantaneous power 
taken from the network has some time intervals when it is returned back, 
which indicates the negative values of p(t). A clearer insight is possible when 
we represent the current as the sum of its components: 

𝑖𝑖𝐿𝐿(𝑡𝑡) = 𝑅𝑅𝑅𝑅[𝑖𝑖𝐿𝐿(𝑡𝑡)] + 𝐼𝐼𝐼𝐼[𝑖𝑖𝐿𝐿(𝑡𝑡)]
= 𝐼𝐼𝑚𝑚 cos𝜑𝜑𝐿𝐿 cos𝜔𝜔𝜔𝜔 + 𝐼𝐼𝑚𝑚 sin(−𝜑𝜑𝐿𝐿) sin𝜔𝜔𝜔𝜔 (1.30) 

The power signal now has the form 
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𝑝𝑝(𝑡𝑡) = 𝑈𝑈𝑚𝑚𝐼𝐼𝑚𝑚(cos𝜑𝜑𝐿𝐿 cos2 𝜔𝜔𝜔𝜔 + sin(−𝜑𝜑𝐿𝐿) sin𝜔𝜔𝜔𝜔 cos𝜔𝜔𝜔𝜔) (1.31) 

 
Fig. 1.8. Time functions of voltage u(t), current i(t) and power p(t) in RL load, ϕL=π/6 
 
and after simple manipulations it gives 

𝑝𝑝(𝑡𝑡) = 𝑈𝑈𝑈𝑈[cos𝜑𝜑𝐿𝐿 (cos 2𝜔𝜔𝜔𝜔 + 1) + sin(−𝜑𝜑𝐿𝐿) sin 2𝜔𝜔𝜔𝜔] (1.32) 
Denoting  

𝐼𝐼𝑅𝑅𝑅𝑅 = 𝐼𝐼 cos𝜑𝜑𝐿𝐿      
𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐼𝐼 sin(−𝜑𝜑𝐿𝐿) (1.33) 

we have 

𝑝𝑝(𝑡𝑡) = 𝑈𝑈𝐼𝐼𝑅𝑅𝑅𝑅(cos 2𝜔𝜔𝜔𝜔 + 1) + 𝑈𝑈𝐼𝐼𝐼𝐼𝐼𝐼 sin 2𝜔𝜔𝜔𝜔 (1.34) 
The first component is always positive and it stands for the power taken 
from the network and converted into another type of power – mechanical or 
heat. We earlier referred to this as the active power. The second component 
has the mean value equal to zero and represents some amount of electric 
power oscillating to and from the network. It is the reactive power necessary 
to create the magnetic field inside the load. The time distributions of electric 
power and its components are shown in Fig. 1.9.  

    ωt 
2π 0 

u(t) 
i(t) 

p(t) 

UI cos(ϕL) 

ϕL 
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Fig. 1.9. Time functions of electric power components in RL load, ϕL=π/6 
 
Having R and L elements connected in series, we may create two kinds 
of phasor diagram: related to the voltage on the terminals (as in Fig. 1.7) 
or related to the current flowing through both of them. The mutual position 
of the voltage and current phasors remains unchanged – the voltage leads 
the current in ϕL, but they differ in terms of the starting time instant when  
t = 0. Following Fig. 1.10.b, we may write 

    𝑈𝑈𝑅𝑅𝑅𝑅 = 𝑈𝑈 cos𝜑𝜑𝐿𝐿 = 𝐼𝐼𝐿𝐿𝑅𝑅     
𝑈𝑈𝐼𝐼𝐼𝐼 = 𝑈𝑈 sin𝜑𝜑𝐿𝐿 = 𝐼𝐼𝐿𝐿𝑋𝑋𝐿𝐿

 (1.35) 

And, according to (1.12), 

𝑈𝑈 = 𝑈𝑈𝑅𝑅𝑅𝑅 + 𝑗𝑗𝑈𝑈𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐿𝐿𝑅𝑅 + 𝑗𝑗𝐼𝐼𝐿𝐿𝑋𝑋𝐿𝐿 = 𝐼𝐼𝐿𝐿𝑅𝑅 + 𝐸𝐸 (1.36) 
where E is the RMS value of electromotive force – each voltage drop on the 
inductance in the circuit can be interpreted as the EMF. It is easy to prove 
that iL(t)2R and e(t)iL(t) produce the same power pictures as in Fig. 1.9. In 
other words, the product e(t)i(t) carries no active power here – the analyzed 
device has input terminals only and the presence of EMF limits the 
magnitude of current taken from the network. 
 

u(t)i(t) 

u(t)iRe (t) 

u(t)iIm (t) 

    ωt 
2π 0 
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Fig. 1.10. Two types of phasor diagrams for RL load, ϕL=π/6 

a. voltage-related, 
b. current-related 

 
 Now let’s observe the changes introduced by the capacitor connected 
in parallel to the RL load. The currents iL(t) and iC(t) are added on to the 
network terminals. It is possible at a given frequency ω to adjust the values 
of L and C in such a way that IC = - Im(IL). The equation linking these 
quantities is 

𝜔𝜔2 =
1
𝐿𝐿𝐿𝐿

 (1.37) 

Thus the resultant current i(t) has the real component only, but the current 
flowing through and the incoming power to the RL load have not changed. At 
present, the reactive power comes here from the capacitor and not from the 
network. When the resistance is negligible (R ≈ 0), the currents in parallel 
branches are in anti-phase (so-called current resonance) and the network 
current is equal to zero. Such a situation is possible when there was an 
electric charge inside the capacitor just before switching it to the RL 
impedance. 
 
1.4. Equivalent RL Circuit 
 The idea of an equivalent circuit of a device comes from well-defined 
calculation methods of complex electric circuits consisting of R, L and C 
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elements, which enable fast analysis of steady and transient voltage and 
current signals. The equivalent circuit usually consists of two ports where 
the power (electrical or mechanical) may flow in and out. In such a case, the 
meaning of the RL elements building the circuit is more general. 
The resistance represents the active power consumed or passed away, and 
the inductance is the measure of reactive power stored inside the device in the 
form of magnetic field. The scheme of RL components does not follow 
the actually existing electric connections, but it rather subdivides the device 
volume into particular parts where the power is stored or exchanged. An 
exemplary equivalent circuit of an induction motor is presented in Fig. 1.11. 
Its details are extensively explained in Chapter 7. 

 
Fig. 1.11. Functionality of equivalent scheme of induction motor 
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